146. LRU Cache

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

Follow up:
Could you do both operations in O(1) time complexity?

Example:

1
2
3
4
5
6
7
8
9
10
11
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4

解法1: HashMap + Deque

O(1)的put和get,hashmap应该是逃不了的。问题是还要维护每一个value的access的时间的先后顺序,一般的解法给出来的办法是用一个deque,最近access过的东西放在deque的最后面,而head就存放将要被删除的value。
那么自己要实现的deque的操作就是move_to_head还有一个是remove_from_head,写的时候别忘了当capacity满了之后,需要从deque和hashmap两个地方都删除掉才行。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
class LRUCache {
class Node {
int key;
int val;
Node prev;
Node next;
public Node(int key, int val) {
this.key = key;
this.val = val;
this.prev = null;
this.next = null;
}
};
private int capacity;
private HashMap<Integer, Node> map = new HashMap<>();
private Node head = new Node(-1, -1);
private Node tail = new Node(-1, -1);
public LRUCache(int capacity) {
this.capacity = capacity;
head.next = tail;
tail.prev = head;
}
public int get(int key) {
if (!map.containsKey(key)) {
return -1;
}
Node node = map.get(key);
// Remove from the list
node.prev.next = node.next;
node.next.prev = node.prev;
// move to tail
move_to_tail(node);
return node.val;
}
public void put(int key, int value) {
if (get(key) != -1) {
map.get(key).val = value;
return;
}
if (map.size() == capacity) {
map.remove(head.next.key);
remove_from_head();
}
Node target = new Node(key, value);
map.put(key, target);
move_to_tail(target);
}
private void move_to_tail(Node node) {
node.prev = tail.prev;
tail.prev = node;
node.prev.next = node;
node.next = tail;
}
private void remove_from_head() {
head.next = head.next.next;
head.next.prev = head;
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/